• 粒子衰变
  • 2025-08-12 07:07:29
  • 主条目:四维动量

    一粒子的四维动量又叫其不变质量。

    一粒子的四维动量平方,定义为其能量平方与其三维动量平方间的差(注意从这开始,采用的单位都能满足光速等于1这项条件):

    p

    2

    =

    E

    2

    (

    p

    )

    2

    =

    m

    2

    (

    1

    )

    {\displaystyle p^{2}=E^{2}-({\vec {p}})^{2}=m^{2}\quad \quad \quad \quad (1)\,}

    两粒子的四维动量平方为

    p

    2

    =

    (

    p

    1

    +

    p

    2

    )

    2

    =

    p

    1

    2

    +

    p

    2

    2

    +

    2

    p

    1

    p

    2

    =

    m

    1

    2

    +

    m

    2

    2

    +

    2

    (

    E

    1

    E

    2

    p

    1

    p

    2

    )

    {\displaystyle p^{2}=\left(p_{1}+p_{2}\right)^{2}=p_{1}^{2}+p_{2}^{2}+2p_{1}p_{2}=m_{1}^{2}+m_{2}^{2}+2(E_{1}E_{2}-{\vec {p}}_{1}\cdot {\vec {p}}_{2})\,}

    四维动量守恒

    编辑

    在所有衰变及粒子相互作用中,四维动量都必须守恒,因此始态pi 与终态pf 的关系为

    p

    i

    =

    p

    f

    {\displaystyle p_{\mathrm {i} }=p_{\mathrm {f} }}

    在二体衰变中

    编辑

    设母粒子质量为M,衰变成两粒子(标记为1和2),那么四维动量的守恒条件则为

    p

    M

    =

    p

    1

    +

    p

    2

    {\displaystyle p_{M}=p_{1}+p_{2}}

    整理可得,

    p

    M

    p

    1

    =

    p

    2

    {\displaystyle p_{M}-p_{1}=p_{2}}

    然后取左右两边的平方

    p

    M

    2

    +

    p

    1

    2

    2

    p

    M

    p

    1

    =

    p

    2

    2

    {\displaystyle p_{M}^{2}+p_{1}^{2}-2p_{M}p_{1}=p_{2}^{2}}

    现在要用的正是四维动量的定义——方程(1),展开各p2 得

    M

    2

    +

    m

    1

    2

    2

    (

    E

    M

    E

    1

    p

    M

    p

    1

    )

    =

    m

    2

    2

    .

    (

    2

    )

    {\displaystyle M^{2}+m_{1}^{2}-2\left(E_{M}E_{1}-{\vec {p}}_{M}\cdot {\vec {p}}_{1}\right)=m_{2}^{2}.\quad \quad \quad \quad (2)\,}

    若进入母粒子的静止系,则

    p

    M

    =

    0

    {\displaystyle {\vec {p}}_{M}=0\,}

    ,及

    E

    M

    =

    M

    {\displaystyle E_{M}=M\,}

    将上述两式代入方程(2)得:

    M

    2

    +

    m

    1

    2

    2

    M

    E

    1

    =

    m

    2

    2

    .

    {\displaystyle M^{2}+m_{1}^{2}-2ME_{1}=m_{2}^{2}.\,}

    整理后得粒子1于母粒子静止系中的能量公式,

    E

    1

    =

    M

    2

    +

    m

    1

    2

    m

    2

    2

    2

    M

    .

    (

    3

    )

    {\displaystyle E_{1}={\frac {M^{2}+m_{1}^{2}-m_{2}^{2}}{2M}}.\quad \quad \quad \quad (3)\,}

    同样地,粒子2在母粒子在静止系中的能量为

    E

    2

    =

    M

    2

    +

    m

    2

    2

    m

    1

    2

    2

    M

    {\displaystyle E_{2}={\frac {M^{2}+m_{2}^{2}-m_{1}^{2}}{2M}}}

    可得

    |

    p

    1

    |

    =

    |

    p

    2

    |

    =

    [

    M

    2

    (

    m

    1

    +

    m

    2

    )

    2

    ]

    [

    M

    2

    (

    m

    1

    m

    2

    )

    2

    ]

    2

    M

    .

    {\displaystyle |{\vec {p}}_{1}|=|{\vec {p}}_{2}|={\frac {\sqrt {\left[M^{2}-\left(m_{1}+m_{2}\right)^{2}\right]\left[M^{2}-\left(m_{1}-m_{2}\right)^{2}\right]}}{2M}}.\,}

    先把

    E

    1

    2

    =

    m

    1

    2

    +

    p

    1

    2

    {\displaystyle E_{1}^{2}=m_{1}^{2}+{\vec {p}}_{1}^{2}\,}

    代入方程(3):

    p

    1

    2

    =

    (

    M

    2

    +

    m

    1

    2

    m

    2

    2

    )

    2

    4

    m

    1

    2

    M

    2

    4

    M

    2

    {\displaystyle {\vec {p_{1}}}^{2}={\frac {(M^{2}+m_{1}^{2}-m_{2}^{2})^{2}-4m_{1}^{2}M^{2}}{4M^{2}}}\,}

    p

    1

    2

    =

    M

    4

    +

    m

    1

    4

    +

    m

    2

    4

    2

    m

    1

    2

    M

    2

    2

    m

    2

    2

    M

    2

    2

    m

    1

    2

    m

    2

    2

    4

    M

    2

    {\displaystyle {\vec {p_{1}}}^{2}={\frac {M^{4}+m_{1}^{4}+m_{2}^{4}-2m_{1}^{2}M^{2}-2m_{2}^{2}M^{2}-2m_{1}^{2}m_{2}^{2}}{4M^{2}}}\,}

    p

    1

    2

    =

    M

    4

    M

    2

    (

    m

    1

    +

    m

    2

    )

    2

    M

    2

    (

    m

    1

    m

    2

    )

    2

    +

    (

    m

    1

    2

    m

    2

    2

    )

    2

    4

    M

    2

    {\displaystyle {\vec {p_{1}}}^{2}={\frac {M^{4}-M^{2}(m_{1}+m_{2})^{2}-M^{2}(m_{1}-m_{2})^{2}+(m_{1}^{2}-m_{2}^{2})^{2}}{4M^{2}}}\,}

    p

    1

    2

    =

    M

    2

    [

    M

    2

    (

    m

    1

    m

    2

    )

    2

    ]

    (

    m

    1

    +

    m

    2

    )

    2

    [

    M

    2

    (

    m

    1

    m

    2

    )

    2

    ]

    4

    M

    2

    {\displaystyle {\vec {p_{1}}}^{2}={\frac {M^{2}\left[M^{2}-(m_{1}-m_{2})^{2}\right]-(m_{1}+m_{2})^{2}\left[M^{2}-(m_{1}-m_{2})^{2}\right]}{4M^{2}}}\,}

    |

    p

    1

    |

    =

    [

    M

    2

    (

    m

    1

    +

    m

    2

    )

    2

    ]

    [

    M

    2

    (

    m

    1

    m

    2

    )

    2

    ]

    2

    M

    .

    {\displaystyle |{\vec {p}}_{1}|={\frac {\sqrt {\left[M^{2}-\left(m_{1}+m_{2}\right)^{2}\right]\left[M^{2}-\left(m_{1}-m_{2}\right)^{2}\right]}}{2M}}.\,}

    |

    p

    2

    |

    {\displaystyle |{\vec {p}}_{2}|\,}

    的推导也一样。